A fit-for-purpose solution, Bluetooth® technology allows developers to create wireless innovations that best meet the needs of their target use case. While the most well-known Bluetooth use cases, such as audio streaming and wearables, are built with short-range connectivity in mind, this is not because of an inherent limit to the effective range of the technology. Bluetooth has the flexibility to be as precise as less than a meter or to reliably connect devices more than a kilometer apart. When determining signal range and reliability at greater distances, several factors need to be considered.

Radio Spectrum

Radio spectrum stretches from 30 Hz to 300 GHz. The lower the frequency, the longer the range. However, the lower the frequency, the lower the data rate it can support. As a result, selecting a radio spectrum comes with tradeoffs between range and data rate.

Bluetooth® technology uses the 2.4 GHz ISM spectrum band (2400 to 2483.5 MHz), which enables a good balance between range and throughput. In addition, the 2.4 GHz band is available worldwide, making it a true standard for low-power wireless connectivity.

Transmit Power

Think of transmit power like the volume of your voice. The louder you speak, the farther away someone can hear you, but the more energy it takes.

Choosing a transmit power level is a design tradeoff between range and power consumption. The higher the transmit power, the more likely the signal can be heard at longer distances, and the longer the effective range. However, increasing the transmit power increases the power consumption of your device.

Bluetooth® technology supports transmit powers from -20 dBm (0.01 mW) to +20 dBm (100 mW).

Receiver Sensitivity

Bluetooth® technology specifies that devices must be able to achieve a minimum receiver sensitivity of -70 dBm to -82 dBm, depending on the PHY used. However, Bluetooth implementations typically achieve much higher receiver sensitivity levels of -95 dBm or better.

Think of receiver sensitivity as a measure of how well you can hear or the quietest sound you can hear and understand. Receiver sensitivity is the measure of the minimum signal strength a receiver can interpret. In other words, it’s the lowest power level at which the receiver can detect a radio signal, maintain a connection, and still demodulate data.

Other Factors

Learn more about other factors, such as path loss, antenna gain, and PHY, that play a key role in determining the effective range of a Bluetooth solution. And check out the Bluetooth range estimator to see how far Bluetooth® range can go for you.

FEATURED TOOL

The Bluetooth Range Estimator

Calculate the expected range between two Bluetooth devices.

TRY IT NOW

Exploring Bluetooth® Channel Sounding

Bluetooth® Channel Sounding is a new secure, fine ranging feature that brings true distance…

Bluetooth® Core Specification v6.0 Feature Overview

Bluetooth® Core Specification version 6.0 includes several feature enhancements. This paper provides an overview…

Bluetooth® Channel Sounding Communications Guide

This communications guide includes Bluetooth® Channel Sounding key messages and positioning details. This document…

Coffee → Max Throughput → More Bluetooth® Testing

Recently, while sipping on our americanos and lattes, conversation moved to our series of…

Coded PHYs + Advertising Coding Selection = Superior Bluetooth® Range

Bluetooth® v5.0 introduced LE Coded PHYs to extend the original range of the 1M…

5.7 km of Bluetooth® Range

40 km from Irvine, California gets you to beautiful Newport Beach Pier, and 5.7…

Unveiling the Truth: Debunking Bluetooth’s Biggest Myth

Bluetooth Low Energy was designed to considerably reduce power consumption and cost while maintaining…

2300 Meters of Bluetooth Connectivity - Not so Short Range

The number of Bluetooth® devices and applications is constantly increasing. Applications such as warehouse…

Using Bluetooth in Location Tracking Devices

Bluetooth ranging technology, which uses the distance between one or more devices through signal…

Bluetooth Development Training: Works With 2022

The role Bluetooth has played, and will continue to play, in the evolution of IoT…

Penn Waste Inc. Minimizes Machine Downtime And Improves Efficiency

Learn how Dodge Industrial partnered with Cassia Networks to help Penn Waste Inc. reduce…

10 Resources That Showcase the Range and Reliability of Bluetooth Technology

Despite the overwhelming adoption of Bluetooth® technology across a wide range of global solutions…

Bluetooth Range and Reliability: Myth vs Fact

For years, Bluetooth® technology enhanced the lives of millions of people around the world, becoming…

How Bluetooth Technology Enables Reliable, Long- Range Solutions

The success of Bluetooth® technology in the wireless communication industry is illustrated by its…

Advanced Bluetooth® Technology – Under the APIs

Bluetooth technology has changed enormously since its initial release about twenty years ago. Communication…

Disrupting the Restoration Industry with Bluetooth

When Steven Kramer became aware of how antiquated water restoration operations had become in…

Long Range High-Quality Bluetooth Audio at L'Oreal Office

L’Oreal was looking for a new solution and wanted to test wireless Bluetooth headsets…

NOTICE: The Bluetooth SIG updated its Terms of Use on 29 October 2024Learn more
 Get Help